版權(quán)歸原作者所有,如有侵權(quán),請(qǐng)聯(lián)系我們

[科普中國(guó)]-原子吸收光譜

科學(xué)百科
原創(chuàng)
科學(xué)百科為用戶提供權(quán)威科普內(nèi)容,打造知識(shí)科普陣地
收藏

基本定義

原子吸收光譜(Atomic Absorption Spectroscopy,AAS),即原子吸收分光光度法,是基于氣態(tài)的基態(tài)原子外層電子對(duì)紫外光和可見(jiàn)光范圍的相對(duì)應(yīng)原子共振輻射線的吸收強(qiáng)度來(lái)定量被測(cè)元素含量為基礎(chǔ)的分析方法,是一種測(cè)量特定氣態(tài)原子對(duì)光輻射的吸收的方法。此法是20世紀(jì)50年代中期出現(xiàn)并在以后逐漸發(fā)展起來(lái)的一種新型的儀器分析方法,它在地質(zhì)、冶金、機(jī)械、化工、農(nóng)業(yè)、食品、輕工、生物醫(yī)藥、環(huán)境保護(hù)、材料科學(xué)等各個(gè)領(lǐng)域有廣泛的應(yīng)用。該法主要適用樣品中微量及痕量組分分析。

發(fā)展歷史1、第一階段——原子吸收現(xiàn)象的發(fā)現(xiàn)與科學(xué)解釋

早在1802年,伍朗斯頓(W.H.Wollaston)在研究太陽(yáng)連續(xù)光譜時(shí),就發(fā)現(xiàn)了太陽(yáng)連續(xù)光譜中出現(xiàn)的暗線。1817年,夫瑯禾費(fèi)(J.Fraunhofer)在研究太陽(yáng)連續(xù)光譜時(shí),再次發(fā)現(xiàn)了這些暗線,由于當(dāng)時(shí)尚不了解產(chǎn)生這些暗線的原因,于是就將這些暗線稱為夫瑯禾費(fèi)線。1859年,克希荷夫(G.Kirchhoff)與本生(R.Bunson)在研究堿金屬和堿土金屬的火焰光譜時(shí),發(fā)現(xiàn)鈉蒸氣發(fā)出的光通過(guò)溫度較低的鈉蒸氣時(shí),會(huì)引起鈉光的吸收,并且根據(jù)鈉發(fā)射線與暗線在光譜中位置相同這一事實(shí),斷定太陽(yáng)連續(xù)光譜中的暗線,正是太陽(yáng)外圍大氣圈中的鈉原子對(duì)太陽(yáng)光譜中的鈉輻射吸收的結(jié)果。

2、第二階段——原子吸收光譜儀器的產(chǎn)生

原子吸收光譜作為一種實(shí)用的分析方法是從1955年開(kāi)始的。這一年澳大利亞的瓦爾西(A.Walsh)發(fā)表了他的著名論文“原子吸收光譜在化學(xué)分析中的應(yīng)用”奠定了原子吸收光譜法的基礎(chǔ)。50年代末和60年代初,Hilger, Varian Techtron及Perkin-Elmer公司先后推出了原子吸收光譜商品儀器,發(fā)展了瓦爾西的設(shè)計(jì)思想。到了60年代中期,原子吸收光譜開(kāi)始進(jìn)入迅速發(fā)展的時(shí)期。

3、第三階段——電熱原子吸收光譜儀器的產(chǎn)生

1959年,蘇聯(lián)里沃夫發(fā)表了電熱原子化技術(shù)的第一篇論文。電熱原子吸收光譜法的絕對(duì)靈敏度可達(dá)到10-12-10-14g,使原子吸收光譜法向前發(fā)展了一步。塞曼效應(yīng)和自吸效應(yīng)扣除背景技術(shù)的發(fā)展,使在很高的的背景下亦可順利地實(shí)現(xiàn)原子吸收測(cè)定?;w改進(jìn)技術(shù)的應(yīng)用、平臺(tái)及探針技術(shù)的應(yīng)用以及在此基礎(chǔ)上發(fā)展起來(lái)的穩(wěn)定溫度平臺(tái)石墨爐技術(shù)(STPF)的應(yīng)用,可以對(duì)許多復(fù)雜組成的試樣有效地實(shí)現(xiàn)原子吸收測(cè)定。

4、第四階段——原子吸收分析儀器的發(fā)展

隨著原子吸收技術(shù)的發(fā)展,推動(dòng)了原子吸收儀器的不斷更新和發(fā)展,而其它科學(xué)技術(shù)進(jìn)步,為原子吸收儀器的不斷更新和發(fā)展提供了技術(shù)和物質(zhì)基礎(chǔ)。使用連續(xù)光源和中階梯光柵,結(jié)合使用光導(dǎo)攝象管、二極管陣列多元素分析檢測(cè)器,設(shè)計(jì)出了微機(jī)控制的原子吸收分光光度計(jì),為解決多元素同時(shí)測(cè)定開(kāi)辟了新的前景。微機(jī)控制的原子吸收光譜系統(tǒng)簡(jiǎn)化了儀器結(jié)構(gòu),提高了儀器的自動(dòng)化程度,改善了測(cè)定準(zhǔn)確度,使原子吸收光譜法的面貌發(fā)生了重大的變化。聯(lián)用技術(shù)(色譜-原子吸收聯(lián)用、流動(dòng)注射-原子吸收聯(lián)用)日益受到人們的重視。色譜-原子吸收聯(lián)用,不僅在解決元素的化學(xué)形態(tài)分析方面,而且在測(cè)定有機(jī)化合物的復(fù)雜混合物方面,都有著重要的用途,是一個(gè)很有前途的發(fā)展方向。1

基本原理每一種元素的原子不僅可以發(fā)射一系列特征譜線,也可以吸收與發(fā)射線波長(zhǎng)相同的特征譜線。當(dāng)光源發(fā)射的某一特征波長(zhǎng)的光通過(guò)原子蒸氣時(shí),即入射輻射的頻率等于原子中的電子由基態(tài)躍遷到較高能態(tài)(一般情況下都是第一激發(fā)態(tài))所需要的能量頻率時(shí),原子中的外層電子將選擇性地吸收其同種元素所發(fā)射的特征譜線,使入射光減弱。特征譜線因吸收而減弱的程度稱吸光度A,與被測(cè)元素的含量成正比:

式中K為常數(shù);C為試樣濃度;I0v為原始光源強(qiáng)度;Iv為吸收后特征譜線的強(qiáng)度。按上式可從所測(cè)未知試樣的吸光度,對(duì)照著已知濃度的標(biāo)準(zhǔn)系列曲線進(jìn)行定量分析。

由于原子能級(jí)是量子化的,因此,在所有的情況下,原子對(duì)輻射的吸收都是有選擇性的。由于各元素的原子結(jié)構(gòu)和外層電子的排布不同,元素從基態(tài)躍遷至第一激發(fā)態(tài)時(shí)吸收的能量不同,因而各元素的共振吸收線具有不同的特征。原子吸收光譜位于光譜的紫外區(qū)和可見(jiàn)區(qū)。

產(chǎn)生基態(tài)原子吸收其共振輻射,外層電子由基態(tài)躍遷至激發(fā)態(tài)而產(chǎn)生原子吸收光譜。原子吸收光譜位于光譜的紫外區(qū)和可見(jiàn)區(qū)。

譜線輪廓原子吸收光譜線并不是嚴(yán)格地幾何意義上的線(幾何線無(wú)寬度),而是有相當(dāng)窄的頻率或波長(zhǎng)范圍,即有一定的寬度。一束不同頻率強(qiáng)度為I0的平行光通過(guò)厚度為/的原子蒸氣,一部分光被吸收,透過(guò)光的強(qiáng)度Iv服從吸收定律

Iv=I0·exp(-kvl)

式中kv是基態(tài)原子對(duì)頻率為v的光的吸收系數(shù)。不同元素原子吸收不同頻率的光,透過(guò)光強(qiáng)度對(duì)吸收光頻率作圖。

原子吸收光譜線中心波長(zhǎng)由原子能級(jí)決定。半寬度是指在中心波長(zhǎng)的地方,極大吸收系數(shù)一半處,吸收光譜線輪廓上兩點(diǎn)之間的頻率差或波長(zhǎng)差。半寬度受到很多實(shí)驗(yàn)因素的影響。影響原子吸收譜線輪廓的兩個(gè)主要因素:

1、多普勒變寬

多普勒寬度是由于原子熱運(yùn)動(dòng)引起的。從物理學(xué)中已知,從一個(gè)運(yùn)動(dòng)著的原子發(fā)出的光,如果運(yùn)動(dòng)方向離開(kāi)觀測(cè)者,則在觀測(cè)者看來(lái),其頻率較靜止原子所發(fā)的光的頻率低;反之,如原子向著觀測(cè)者運(yùn)動(dòng),則其頻率較靜止原子發(fā)出的光的頻率為高,這就是多普勒效應(yīng)。原子吸收分析中,對(duì)于火焰和石墨爐原子吸收池,氣態(tài)原子處于無(wú)序熱運(yùn)動(dòng)中,相對(duì)于檢測(cè)器而言,各發(fā)光原子有著不同的運(yùn)動(dòng)分量,即使每個(gè)原子發(fā)出的光是頻率相同的單色光,但檢測(cè)器所接受的光則是頻率略有不同的光,于是引起譜線的變寬。

2、碰撞變寬

當(dāng)原子吸收區(qū)的原子濃度足夠高時(shí),碰撞變寬是不可忽略的。因?yàn)榛鶓B(tài)原子是穩(wěn)定的,其壽命可視為無(wú)限長(zhǎng),因此對(duì)原子吸收測(cè)定所常用的共振吸收線而言,譜線寬度僅與激發(fā)態(tài)原子的平均壽命有關(guān),平均壽命越長(zhǎng),則譜線寬度越窄。原子之間相互碰撞導(dǎo)致激發(fā)態(tài)原子平均壽命縮短,引起譜線變寬。碰撞變寬分為兩種,即赫魯茲馬克變寬和洛倫茨變寬。

赫魯茲馬克變寬是指被測(cè)元素激發(fā)態(tài)原子與基態(tài)原子相互碰撞引起的變寬,稱為共振變寬,又稱赫魯茲馬克變寬或壓力變寬。在通常的原子吸收測(cè)定條件下,被測(cè)元素的原子蒸氣壓力很少超過(guò)10-3mmHg,共振變寬效應(yīng)可以不予考慮,而當(dāng)蒸氣壓力達(dá)到0.1mmHg時(shí),共振變寬效應(yīng)則明顯地表現(xiàn)出來(lái)。洛倫茨變寬是指被測(cè)元素原子與其它元素的原子相互碰撞引起的變寬,稱為洛倫茨變寬。洛倫茨變寬隨原子區(qū)內(nèi)原子蒸氣壓力增大和溫度升高而增大。

除上述因素外,影響譜線變寬的還有其它一些因素,例如場(chǎng)致變寬、自吸效應(yīng)等。但在通常的原子吸收分析實(shí)驗(yàn)條件下,吸收線的輪廓主要受多普勒和洛倫茨變寬的影響。在2000-3000K的溫度范圍內(nèi),原子吸收線的寬度約為10-3-10-2nm。

測(cè)量(1) 積分吸收在吸收線輪廓內(nèi),吸收系數(shù)的積分稱為積分吸收系數(shù),簡(jiǎn)稱為積分吸收,它表示吸收的全部能量。從理論上可以得出,積分吸收與原子蒸氣中吸收輻射的原子數(shù)成正比。

(2) 峰值吸收

1955年Walsh A提出,在溫度不太高的穩(wěn)定火焰條件下,峰值吸收系數(shù)與火焰中被測(cè)元素的原子濃度也成正比。吸收線中心波長(zhǎng)處的吸收系數(shù)K0為峰值吸收系數(shù),簡(jiǎn)稱峰值吸收。前面指出,在通常原子吸收測(cè)定條件下,原子吸收線輪廓取決于Doppler寬度峰值吸收系數(shù)與原子濃度成正比。

(3)銳線光源

峰值吸收的測(cè)定是至關(guān)重要的,在分子光譜中光源都是使用連續(xù)光譜,連續(xù)光譜的光源很難測(cè)準(zhǔn)峰值吸收,Walsh還提出用銳線光源測(cè)量峰值吸收,從而解決了原子吸收的實(shí)用測(cè)量問(wèn)題。

銳線光源是發(fā)射線半寬度遠(yuǎn)小于吸收線半寬度的光源,如空心陰極燈。在使用銳線光源時(shí),光源發(fā)射線半寬度很小,并且發(fā)射線與吸收線的中心頻率一致。這時(shí)發(fā)射線的輪廓可看作一個(gè)很窄的矩形,即峰值吸收系數(shù)Kv在此輪廓內(nèi)不隨頻率而改變,吸收只限于發(fā)射線輪廓內(nèi)。這樣,一定的K0即可測(cè)出一定的原子濃度。

原子吸收分光光度計(jì)原子吸收分光光度計(jì)由光源、原子化器、分光器、檢測(cè)系統(tǒng)等幾部分組成。2

組成光源光源的功能是發(fā)射被測(cè)元素的特征共振輻射。對(duì)光源的基本要求是:發(fā)射的共振輻射的半寬度要明顯小于吸收線的半寬度;輻射強(qiáng)度大;背景低,低于特征共振輻射強(qiáng)度的1%;穩(wěn)定性好,30min之內(nèi)漂移不超過(guò)1%;噪聲小于0.1%;使用壽命長(zhǎng)于5A·h。多用空心陰極燈等銳線光源。

原子化器原子化器的功能是提供能量,使試樣干燥、蒸發(fā)和原子化。在原子吸收光譜分析中,試樣中被測(cè)元素的原子化是整個(gè)分析過(guò)程的關(guān)鍵環(huán)節(jié)。實(shí)現(xiàn)原子化的方法,最常用有兩種:一種是火焰原子化法(火焰原子化器),是原子光譜分析中最早使用的原子化方法,至今仍在廣泛地被應(yīng)用;另一種是非火焰原子化法,其中應(yīng)用最廣的是石墨爐電熱原子化法。

分光器分光器由入射和出射狹縫、反射鏡和色散元件組成,其作用是將所需要的共振吸收線分離出來(lái)。分光器的關(guān)鍵部件是色散元件,商品儀器都是使用光柵。原子吸收光譜儀對(duì)分光器的分辨率要求不高,曾以能分辨開(kāi)鎳三線Ni230.003,Ni231.603,Ni231.096nm為標(biāo)準(zhǔn),后采用Mn279.5和Mn279.8nm代替Ni三線來(lái)檢定分辨率。光柵放置在原子化器之后,以阻止來(lái)自原子化器內(nèi)的所有不需要的輻射進(jìn)入檢測(cè)器。3

檢測(cè)系統(tǒng)原子吸收光譜儀中廣泛使用的檢測(cè)器是光電倍增管,一些儀器也采用CCD作為檢測(cè)器。

干擾種類物理干擾物理干擾是指試樣在轉(zhuǎn)移、蒸發(fā)過(guò)程中任何物理因素變化而引起的干擾效應(yīng)。屬于這類干擾的因素有:試液的粘度、溶劑的蒸汽壓、霧化氣體的壓力等。物理干擾是非選擇性干擾,對(duì)試樣各元素的影響基本是相似的。

配制與被測(cè)試樣相似的標(biāo)準(zhǔn)樣品,是消除物理干擾的常用的方法。在不知道試樣組成或無(wú)法匹配試樣時(shí),可采用標(biāo)準(zhǔn)加入法或稀釋法來(lái)減小和消除物理干擾。

化學(xué)干擾化學(xué)干擾是指待測(cè)元素與其它組分之間的化學(xué)作用所引起的干擾效應(yīng),它主要影響待測(cè)元素的原子化效率,是原子吸收分光光度法中的主要干擾來(lái)源。它是由于液相或氣相中被測(cè)元素的原子與干擾物質(zhì)組成之間形成熱力學(xué)更穩(wěn)定的化合物,從而影響被測(cè)元素化合物的解離及其原子化。

消除化學(xué)干擾的方法有:化學(xué)分離;使用高溫火焰;加入釋放劑和保護(hù)劑;使用基體改進(jìn)劑等。

電離干擾在高溫下原子電離,使基態(tài)原子的濃度減少,引起原子吸收信號(hào)降低,此種干擾稱為電離干擾。電離效應(yīng)隨溫度升高、電離平衡常數(shù)增大而增大,隨被測(cè)元素濃度增高而減小。加入更易電離的堿金屬元素,可以有效地消除電離干擾。

光譜干擾光譜干擾包括譜線重疊、光譜通帶內(nèi)存在非吸收線、原子化池內(nèi)的直流發(fā)射、分子吸收、光散射等。當(dāng)采用銳線光源和交流調(diào)制技術(shù)時(shí),前3種因素一般可以不予考慮,主要考慮分子吸收和光散射地影響,它們是形成光譜背景的主要因素。

分子吸收干擾分子吸收干擾是指在原子化過(guò)程中生成的氣體分子、氧化物及鹽類分子對(duì)輻射吸收而引起的干擾。光散射是指在原子化過(guò)程中產(chǎn)生的固體微粒對(duì)光產(chǎn)生散射,使被散射的光偏離光路而不為檢測(cè)器所檢測(cè),導(dǎo)致吸光度值偏高。4

相關(guān)特點(diǎn)檢出限低,靈敏度高

火焰原子吸收分光光度法測(cè)定大多數(shù)金屬元素的相對(duì)靈敏度為1.0×10-8~1.0×10-10g·mL-1,非火焰原子吸收分光光度法的絕對(duì)靈敏度為1.0×10-12~1.0×10-14g。這是由于原子吸收分光光度法測(cè)定的是占原子總數(shù)99%以上的基態(tài)原子,而原子發(fā)射光譜測(cè)定的是占原子總數(shù)不到1%的激發(fā)態(tài)原子,所以前者的靈敏度和準(zhǔn)確度比后者高的多。

精密度好

由于溫度的變化對(duì)測(cè)定影響較小,該法具有良好的穩(wěn)定性和重現(xiàn)性,精密度好。一般儀器的相對(duì)標(biāo)準(zhǔn)偏差為1%~2%,性能好的儀器可達(dá)0.1%~0.5%.

選擇性好,方法簡(jiǎn)便

由光源發(fā)出特征性入射光很簡(jiǎn)單,且基態(tài)原子是窄頻吸收,元素之間的干擾較小,可不經(jīng)分離在同一溶液中直接測(cè)定多種元素,操作簡(jiǎn)便。

準(zhǔn)確度高,分析速度快

測(cè)定微痕量元素的相對(duì)誤差可達(dá)0.1%~0.5%,分析一個(gè)元素只需數(shù)十秒至數(shù)分鐘。

應(yīng)用廣泛

可直接測(cè)定巖礦、土壤、大氣飄塵、水、植物、食品、生物組織等試樣中70多種微量金屬元素,還能用間接法測(cè)度硫、氮、鹵素等非金屬元素及其化合物。該法已廣泛應(yīng)用于環(huán)境保護(hù)、化工、生物技術(shù)、食品科學(xué)、食品質(zhì)量與安全、地質(zhì)、國(guó)防、衛(wèi)生檢測(cè)和農(nóng)林科學(xué)等各部門。

對(duì)原子吸收分析法基本理論的討論,主要是解決兩個(gè)方面的問(wèn)題:①基態(tài)原子的產(chǎn)生以及它的濃度與試樣中該元素含量之間的定量關(guān)系;②基態(tài)原子吸收光譜的特性及基態(tài)原子的濃度與吸光度之間的關(guān)系。

局限性

1、不能進(jìn)行多元素分析:原子吸收法測(cè)定一個(gè)元素得換一個(gè)空心陰極燈作為銳線光源,雖然,已研制成新的光源——多元素?zé)?,但多元素?zé)舻姆€(wěn)定性、光源強(qiáng)度受到一定的限制,應(yīng)用不是很廣。

2、不能做結(jié)構(gòu)分析:和原子發(fā)射一樣它只能作組份分析,不能做結(jié)構(gòu)分析。

3、難熔元素、非金屬元素測(cè)定困難。5

相關(guān)應(yīng)用與發(fā)展前景原子吸收光譜是分析化學(xué)領(lǐng)域中一種極其重要的分析方法,已廣泛用于冶金工業(yè)。吸收原子吸收光譜法是利用被測(cè)元素的基態(tài)原子特征輻射線的吸收程度進(jìn)行定量分析的方法。既可進(jìn)行某些常量組分測(cè)定,又能進(jìn)行ppm、ppb級(jí)微量測(cè)定,可進(jìn)行鋼鐵中低含量的Cr、Ni、Cu、Mn、Mo、Ca、Mg、Als、Cd、Pb、Ad;原材料、鐵合金中的K2O、Na2O、MgO、Pb、Zn、Cu、Ba、Ca等元素分析及一些純金屬(如Al、Cu)中殘余元素的檢測(cè)。

國(guó)內(nèi)外都有人致力于研究激光在原子吸收分析方面的應(yīng)用:

(1)用可調(diào)諧激光代替空心陰極燈光源。

(2)用激光使樣品原子化。它將為微區(qū)和薄膜分析提供新手段、為難熔元素的原子化提供了新方法。塞曼效應(yīng)的應(yīng)用,使得能在很高的背景下也能順利地實(shí)現(xiàn)測(cè)定。連續(xù)光源、中階梯光柵單色器、波長(zhǎng)調(diào)制原子吸收法(簡(jiǎn)稱CEWM-AA法)是70年代后期發(fā)展起來(lái)的一種背景校正新技術(shù)。它的主要優(yōu)點(diǎn)是僅用一個(gè)連續(xù)光源能在紫外區(qū)到可見(jiàn)區(qū)全波段工作,具有二維空間色散能力的高分辨本領(lǐng)的中階梯光柵單色器將光譜線在二維空間色散,不僅能扣除散射光和分子吸收光譜帶背景,而且還能校正與分折線直接重疊的其他原子吸收線的干擾。使用電視型光電器件做多元素分析鑒定器,結(jié)合中階梯光柵單色器和可調(diào)諧激光器代替元素空心陰極燈光源,設(shè)計(jì)出用電子計(jì)算機(jī)控制的測(cè)定多元素的原子吸收分光光度計(jì),將為解決同時(shí)測(cè)定多元素問(wèn)題開(kāi)辟新的途徑。高效分離技術(shù)氣相色譜、液相色譜的引入,實(shí)現(xiàn)分離儀器和測(cè)定儀器聯(lián)用,將會(huì)使原子吸收分光光度法的面貌發(fā)生重大變化,微量進(jìn)樣技術(shù)和固體直接原子吸收分析受到了人們的注意。固體直接原子吸收分析的顯著優(yōu)點(diǎn)是:省去了分解試樣步驟,不加試劑,不經(jīng)任何分離、富集手續(xù),減少了污染和損失的可能性,這對(duì)生物、醫(yī)藥、環(huán)境、化學(xué)等這類只有少量樣品供分析的領(lǐng)域?qū)⑹翘貏e有意義的。所有這些新的發(fā)展動(dòng)向,都很值得引起我們的重視。微型電子計(jì)算機(jī)應(yīng)用到原子吸收分光光度計(jì)后,使儀器的整機(jī)性能和自動(dòng)化程度達(dá)到一個(gè)新的階段。

原子吸收法已廣泛應(yīng)用于各個(gè)領(lǐng)域,對(duì)工業(yè)、農(nóng)業(yè)、醫(yī)藥衛(wèi)生、教學(xué)科研等發(fā)展起著積極的作用。6