部分研究生不大會(huì)自己找題目做研究,而是“等米下鍋”。美國南密西西比大學(xué)數(shù)學(xué)系教授丁玖回憶了自己求學(xué)和論文選題、寫作的特別經(jīng)歷。
撰文 | 丁玖(美國南密西西比大學(xué)數(shù)學(xué)系教授)
新冠疫情爆發(fā)前,我回國學(xué)術(shù)訪問、與教授們交流時(shí),他們提到,部分研究生不大會(huì)自己找題目做研究,而是像課堂考試等發(fā)試卷那樣,等導(dǎo)師指定一個(gè)研究論題。“嗟來之食”總沒有自助餐吃得舒暢。我們都知道,農(nóng)家自由放養(yǎng)的草雞味美汁鮮,遠(yuǎn)非集體圈養(yǎng)的肉雞可比。蓋因肉雞飯來張口,食譜單調(diào);而草雞到處覓食,營養(yǎng)豐富。草雞的市場價(jià)錢,也因此比肉雞貴許多。我小時(shí)候住在父母的學(xué)校教工宿舍,下雨前最愛在操場上,用大掃帚拍捉矮飛的蜻蜓來喂雞,因?yàn)樗鼈兘o我們下蛋吃呢。就像念書時(shí),視野不應(yīng)囿于教科書的方寸紙頁,選擇學(xué)位論文研究課題時(shí),也最好能處處注意,主動(dòng)出擊。就我而言,博士論文的選題雖然出于偶然得之,事先可能連導(dǎo)師李天巖(1945-2020)教授也沒想到,卻是“到處留心皆學(xué)問”的結(jié)果。其實(shí),我赴美后寫的第一篇研究文章,是得益于我南大老同學(xué)魏木生博士的先驅(qū)性工作,而與導(dǎo)師涉足的幾個(gè)領(lǐng)域無關(guān)。雖然它未被放入我的博士論文,其誕生機(jī)緣卻與后來的學(xué)位論文有異曲同工之處。
為準(zhǔn)確起見,本文將引進(jìn)一些數(shù)學(xué)概念。我將用初等或幾何語言,以及比喻類比,來描述概念,即便讀者不全懂?dāng)?shù)學(xué)內(nèi)涵也無妨。性急的讀者不必望而生畏而減少繼續(xù)讀下去的勁頭,希望所講故事的戲劇性和啟發(fā)性燃起他們更大的閱讀火苗。
“找米下鍋”
我讀博階段的第一項(xiàng)研究,是關(guān)于虧秩矩陣最小二乘解的攝動(dòng)理論。最小二乘法祖師爺之一高斯(Carl Friedrich Gauss,1777-1855)早在十八歲時(shí)就已萌生出該法的思想。作為哥廷根大學(xué)天文臺(tái)臺(tái)長的他,在研究天文觀測數(shù)據(jù)時(shí)發(fā)明了最小二乘法。這在幾何上與平面上給定試驗(yàn)數(shù)據(jù)點(diǎn)的曲線擬合有關(guān)。比如說,設(shè)想在直角坐標(biāo)平面上有十個(gè)點(diǎn),可以看成是某個(gè)試驗(yàn)結(jié)果的十組數(shù)據(jù)。它們一般不會(huì)恰巧沿著一條直線排列。但是,我們能不能畫出一條直線,使得它和這些點(diǎn)的“垂直距離”的平方之和最小?這就是“最小二乘問題”的簡單一例。它的答案是肯定的,其解法就是“最小二乘法”。最小二乘問題由一個(gè)矩陣確定,它是排成幾行幾列的一組數(shù)字。對(duì)于“滿秩”矩陣(即矩陣的“秩”等于行和列數(shù)之較小值),最小二乘的理論與算法已很成熟,構(gòu)成了計(jì)算數(shù)學(xué)子學(xué)科數(shù)值線性代數(shù)的一部分。
我的大學(xué)同學(xué)魏木生,在七七級(jí)江蘇高考中數(shù)學(xué)全省第一——正題及附加題皆為滿分,本科畢業(yè)后公費(fèi)去了美國布朗大學(xué)留學(xué),1986年獲博士學(xué)位。他的博士論文是關(guān)于散射波計(jì)算,這需要考慮最小二乘問題。但此時(shí)矩陣不再是滿秩的,而是“虧秩”的,即矩陣之秩小于矩陣的行和列數(shù)。他在文獻(xiàn)中找不到現(xiàn)成的虧秩問題攝動(dòng)理論可供參考。有次在學(xué)術(shù)會(huì)議上,魏木生遇到數(shù)值代數(shù)大人物、美國科學(xué)院與工程院雙院士、斯坦福大學(xué)計(jì)算機(jī)科學(xué)系的高露博(Gene Howard Golub,1932-2007)教授,便向他求教。對(duì)方的回答讓他相當(dāng)驚訝:還沒有人認(rèn)真研究過此類問題。于是魏木生決定,自己動(dòng)手打下這個(gè)新領(lǐng)域的第一根樁。1989年,他關(guān)于虧秩矩陣最小二乘攝動(dòng)理論的首篇論文刊登于期刊《線性代數(shù)及其應(yīng)用》(Linear Algebra and Its Applications)。
1986-87學(xué)年,魏木生在明尼蘇達(dá)大學(xué)數(shù)學(xué)及其應(yīng)用研究所做博士后。1987年秋,魏木生來我讀博的密歇根州立大學(xué)數(shù)學(xué)系,繼續(xù)他的博士后研究。李天巖教授在六七個(gè)申請(qǐng)者中挑選了他,因?yàn)榭吕蕯?shù)學(xué)科學(xué)研究所的大數(shù)學(xué)家拉克斯(Peter Lax, 1926-)教授寫了一封有力的推薦信。能讓拉克斯提筆寫信的人,當(dāng)然絕非等閑之輩。的確,魏木生之所以得此殊榮,是因?yàn)樗诓┦空撐闹?,推翻了拉克斯散射波理論專著的一個(gè)觀點(diǎn)。整整一學(xué)年,我們兩個(gè)老同學(xué)經(jīng)常偕家人驅(qū)車去購物,共同度過了許多愉快的時(shí)光。就在那個(gè)秋學(xué)季,我拜讀了魏木生寫的幾篇文章,覺得非常有意思。
魏木生博士的開創(chuàng)性工作,本質(zhì)上是通過估計(jì)虧秩最小二乘問題攝動(dòng)解的誤差上界,論證了一般最小二乘解的“上半連續(xù)性”。自然界許多現(xiàn)象都是連續(xù)的,比如水是連續(xù)流動(dòng)的?!敖獾倪B續(xù)性”大概是說,當(dāng)所解問題的數(shù)據(jù)稍有變化時(shí),解的變化也不大。為了能夠應(yīng)用矩陣論中著名的“奇異值分解定理”,他不得不使用以一百年前德國數(shù)學(xué)家弗羅貝尼烏斯(Ferdinand Georg Frobenius,1849-1917)名字命名的一種矩陣范數(shù)。這個(gè)范數(shù)是把m行、n列矩陣的所有元素排成有mn個(gè)分量的向量,再計(jì)算出該向量的歐幾里得范數(shù)(即所有分量平方求和,再開平方根)。讀畢全文,一股強(qiáng)烈感受很快涌上我的心頭:文章結(jié)論自然漂亮,數(shù)學(xué)分析也很精辟,但使用這個(gè)范數(shù),總不及最小二乘問題本身定義所采用的向量歐幾里得范數(shù)來得自然。于是我主動(dòng)出擊,集中精力苦苦思索,不久就有了頭緒,只用歐幾里得范數(shù),獲得了一個(gè)較為簡潔的攝動(dòng)界。
因?yàn)檫@是我來美后寫成的第一篇文章,完稿時(shí)我頗有點(diǎn)小激動(dòng)。我的碩士論文從未投稿以求發(fā)表,一方面因?yàn)楫?dāng)時(shí)太太懷孕,我當(dāng)然要盡點(diǎn)責(zé)任,加上后來又忙于出國留學(xué),無暇整理;另一方面我早已對(duì)那個(gè)工作不再看重,蓋因來美后發(fā)現(xiàn),國際上基于三角剖分的單純不動(dòng)點(diǎn)算法研究已趨沉寂,不像七十年代到八十年代初那么紅火。而基于微分拓?fù)渌枷氲默F(xiàn)代同倫算法,生命力卻一直旺盛。我?guī)讉€(gè)師兄弟的博士論文,都與這個(gè)方法密切相關(guān)。我后來也將同倫延拓法的思想用于最優(yōu)化的研究。
興奮之余,我將文章初稿寄給了當(dāng)時(shí)遠(yuǎn)在日本京都大學(xué)數(shù)理解析研究所擔(dān)任講座教授的導(dǎo)師李天巖,請(qǐng)他提建議。李天巖教授很快回函,在三頁長信中對(duì)我文章的主要定理發(fā)表了具體意見,并在有關(guān)讀書研究的方法論上,給予了啟迪心智的評(píng)述。平時(shí)不大當(dāng)面表揚(yáng)學(xué)生的他,這次卻滿腔熱情地鼓勵(lì)了我,因?yàn)樵谧鰧W(xué)問這件事上,我沒有“等米下鍋”,而是“找米下鍋”。按照他的觀點(diǎn),這是一個(gè)研究生“應(yīng)盡的義務(wù)”。
師者傳道
對(duì)于博士生怎樣做研究,李天巖教授自己的求學(xué)經(jīng)歷就是最好示范。他三十歲前的三大學(xué)術(shù)貢獻(xiàn)為:八頁短文《周期三意味著混沌》首次在數(shù)學(xué)上給出“混沌”概念的精確定義;率先計(jì)算性構(gòu)造布勞威爾不動(dòng)點(diǎn),是現(xiàn)代同倫延拓法的開山之作;歷史首次證明了計(jì)算遍歷理論中的烏拉姆猜想。其中最有名的第一項(xiàng)工作,是他與博士論文導(dǎo)師約克(James Yorke,1941-)合作研究的結(jié)晶,迄今被引用超過五千九百次。這在引用次數(shù)普遍大大低于實(shí)驗(yàn)科學(xué)和工程領(lǐng)域的數(shù)學(xué)論文群體中,是名列前茅的。第二篇論文的作者,除約克外又加了凱洛格(Bruce Kellogg,1930-2012)。他單獨(dú)完成的第三項(xiàng)成果,則提供了我博士論文的靈感源泉。
我們先回顧一下,他是怎么“走運(yùn)”地寫出了天下第一篇用現(xiàn)代同倫延拓法計(jì)算布勞威爾不動(dòng)點(diǎn)的文章。這個(gè)以荷蘭數(shù)學(xué)家命名的拓?fù)鋵W(xué)大定理,在最簡單的一維情形,就是初等微積分中的介值定理,其幾何性質(zhì)人人都懂:連接一條直線兩側(cè)之點(diǎn)的任意連續(xù)曲線必與直線相交。布勞威爾不動(dòng)點(diǎn)定理在二維的情形就是:閉圓盤上任意一個(gè)連續(xù)自映射(即值域包含于定義域)必有不動(dòng)點(diǎn),即該點(diǎn)被映到自己。李天巖1968年畢業(yè)于臺(tái)灣新竹清華大學(xué),當(dāng)兵一年后,去了美國馬里蘭大學(xué)數(shù)學(xué)系讀博,師從約克教授。畢業(yè)前一年的1973年,他修了凱洛格教授的課《非線性方程組數(shù)值解》。課中,教授講述了加州大學(xué)伯克利分校數(shù)學(xué)系赫希(Morris Hirsch,1933-)教授十年前發(fā)表的布勞威爾不動(dòng)點(diǎn)定理新證明。
這個(gè)簡潔反證法的思路是:假設(shè)不動(dòng)點(diǎn)不存在,則導(dǎo)致與拓?fù)鋵W(xué)某定理相矛盾。這后一定理是說,不存在將閉圓盤映到其圓周邊界的光滑映射,使得圓周上的所有點(diǎn)保持不動(dòng)。這些拓?fù)鋵W(xué)上有趣的深刻定理,可以解釋為什么人頭頂上有處不長頭發(fā)的旋窩。李天巖聽到如此新穎的證明,喜歡思考的他頓生一計(jì):可用該思路計(jì)算定理保證存在的不動(dòng)點(diǎn)。因?yàn)殚]圓盤是個(gè)二維區(qū)域,而圓周僅是一維曲線,對(duì)于赫??紤]的將圓盤映到圓周的映射,定義域比值域多了一維,故存在“逆像”曲線,它起始于圓周上一點(diǎn)而終止于原先映射的不動(dòng)點(diǎn)集合。只要能在數(shù)值上跟隨這條“同倫曲線”,不動(dòng)點(diǎn)就可以算出來。主動(dòng)而獨(dú)立的思維,牽引出這么奇妙的新算法!創(chuàng)造性的思想,是那些靠死記硬背定義、定理、證明的讀書者難以想象的奇跡。但是對(duì)喜歡追根求源、尋找原始思想的探索者,這卻是最自然的水到渠成。
當(dāng)李天巖告訴了約克他的想法后,后者全力支持他干下去,盡管他手中還有其他研究項(xiàng)目,眼光深遠(yuǎn)的導(dǎo)師知道該課題的價(jià)值。經(jīng)過兩個(gè)月編程計(jì)算,李天巖的算法思想終于實(shí)現(xiàn)——薄薄的一頁打印紙,記錄了歷史上第一個(gè)現(xiàn)代同倫算法的數(shù)值結(jié)果。將在克萊姆森大學(xué)召開的不動(dòng)點(diǎn)算法及其應(yīng)用會(huì)議的籌委會(huì),一聽說他們用微分拓?fù)渌枷霕?gòu)造了新的同倫不動(dòng)點(diǎn)算法,而不是沿著耶魯大學(xué)經(jīng)濟(jì)學(xué)教授斯卡夫(Herbert Scarf,1930-2015) 1967年開辟的基于單純剖分和組合技巧的單純不動(dòng)點(diǎn)算法的路線走,馬上提供了兩張機(jī)票,邀請(qǐng)他們赴會(huì)宣讀論文。后來,斯卡夫在會(huì)議論文集序言中,對(duì)凱洛格-李-約克文章的新思路贊不絕口。從此,現(xiàn)代同倫延拓法進(jìn)入了計(jì)算數(shù)學(xué)的大舞臺(tái)。
“憑著一股牛勁”
如前所述,李天巖教授學(xué)術(shù)生涯中三項(xiàng)最著名的杰出工作,都完成于他的博士生階段。其中第三篇關(guān)于“烏拉姆猜想”的論文由他獨(dú)立完成,1976年發(fā)表于美國《逼近論雜志》(Journal of Approximation Theory)。這篇文章是如何誕生的呢?1973年,約克與其合作者、波蘭科學(xué)院院士洛速達(dá)(Andrzej Lasota,1932-2006)在期刊《美國數(shù)學(xué)會(huì)匯刊》(Transactions of the American Mathematical Society)上發(fā)表了一篇現(xiàn)已成為遍歷理論經(jīng)典文獻(xiàn)的論文,其中證明了一個(gè)關(guān)于絕對(duì)連續(xù)不變測度的存在性定理。它斷言,定義在區(qū)間上的一類逐片拉長自映射,存在一個(gè)“不變密度函數(shù)”。密度函數(shù)是常在概率論里露面的數(shù)學(xué)對(duì)象,它是取值為非負(fù)數(shù)的函數(shù),并且總體積分為1。即位于它的圖像之下、區(qū)間之上的“曲邊矩形”面積等于1。不變密度函數(shù)的存在性保證后,李天巖開始考慮怎樣把它計(jì)算出來?;蜓灾鯓釉跀?shù)值上有效地逼近它。他提出了一個(gè)使用逐片常數(shù)函數(shù)的逼近法,并對(duì)洛速達(dá)和約克考慮的那類區(qū)間映射,證明了算法的收斂性。顧名思義,逐片常數(shù)函數(shù)在剖分定義域區(qū)間的那些子區(qū)間上分別取常數(shù)值。
但是李天巖卻全然不知,美國氫彈之父、波蘭裔杰出數(shù)學(xué)家烏拉姆(Stanislaw Ulam,1909-1984),在他1960年出版的一本篇幅只有一百五十頁的小書《數(shù)學(xué)問題集》(A Collection of Mathematical Problems)中,已經(jīng)提出這個(gè)方法,用來計(jì)算不變密度函數(shù)。文章寫好后,李天巖才聽說這就是十幾年前已有的烏拉姆方法。并且烏拉姆在書中猜測,只要不變密度函數(shù)存在,算法就收斂。“烏拉姆猜想”催生了在物理及工程中有重要應(yīng)用價(jià)值的“計(jì)算遍歷理論”學(xué)科問世。李天巖文章與烏拉姆方法的“歷史性巧合”,也導(dǎo)致文章題目改動(dòng),加上了“烏拉姆猜想的一個(gè)解答”。這篇計(jì)算遍歷理論領(lǐng)域的里程碑之作最終是《弗羅貝尼烏斯-佩隆算子的有限逼近——烏拉姆猜想的一個(gè)解答》。
多年后,李天巖教授對(duì)我回憶他這篇大作的出爐經(jīng)過,十分感慨地說道:“如果我當(dāng)時(shí)事先知道,這個(gè)算法的收斂性,連和馮·諾伊曼一個(gè)級(jí)別的數(shù)學(xué)家烏拉姆也未給出證明的話,可能不大敢啃這塊骨頭?!钡?,年輕時(shí)的李天巖,是個(gè)“初生牛犢不怕虎”的猛士。按照自己的說法,他“憑著一股牛勁,凡事堅(jiān)持到底,絕不輕易放棄?!彼J(rèn)為,大人物解決不了的問題,并不能說明小人物也解決不了,大人物思考問題的途徑也不一定是解決問題的唯一途徑。在學(xué)問的道路上,只要有獨(dú)立的精神、自由的思想,只要比別人多花了一分鐘思考,就能夠?qū)⒖此评щy的問題搞個(gè)水落石出。
1987年初夏前,我在通過兩門外語(英文和中文都不算外語)考試后,一邊繼續(xù)修課,一邊積極跟上一個(gè)嶄新領(lǐng)域——線性規(guī)劃內(nèi)點(diǎn)算法。它與我在南大讀碩士的最優(yōu)化方向相關(guān),起始于印度人卡瑪卡(Narendra Karmarkar,1956-)于1984年發(fā)表的一篇開創(chuàng)性論文。這個(gè)領(lǐng)域當(dāng)時(shí)在國際優(yōu)化界已開始熱浪滾滾,跟進(jìn)的研究者趨之若鶩。許多人甚至預(yù)測卡瑪卡在上世紀(jì)結(jié)束前將會(huì)獲得諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng),就像最早提出線性規(guī)劃有效計(jì)算方法的蘇聯(lián)數(shù)學(xué)家康托諾維奇(Leonid Kantorovich,1912-1986)當(dāng)年那樣。不過這個(gè)預(yù)測沒有變成現(xiàn)實(shí)。李教授考慮到我的老本行是數(shù)學(xué)規(guī)劃,建議我跟上內(nèi)點(diǎn)算法快速發(fā)展的步伐。他的一些素有學(xué)術(shù)往來的朋友,如日本最優(yōu)化理論著名學(xué)者小島政和(Masakazo Kojima,1944-)教授,常寄來這方面的文章預(yù)印本。斯坦福大學(xué)運(yùn)籌學(xué)博士葉蔭宇等幾個(gè)華人學(xué)者,也開始嶄露頭角。我力圖多了解這些最新的研究成果,慢慢靠近學(xué)術(shù)前沿,并完成了幾篇關(guān)于線性相補(bǔ)問題內(nèi)點(diǎn)算法的文章。其中與導(dǎo)師合作的第一篇,有幸在1991年發(fā)表于美國工業(yè)與應(yīng)用數(shù)學(xué)會(huì)那年新辦的《SIAM最優(yōu)化雜志》(SIAM Journal on Optimization)創(chuàng)刊號(hào)上。我曾打算將這些內(nèi)容整理成我的博士論文,但后來的結(jié)局卻是始料未及的。
西海岸之旅
1989年3月,我三歲女兒跟著她奶奶來到美國。這是我們父女首次相會(huì),盡管她在底特律機(jī)場見到我時(shí)用一口純正揚(yáng)州話對(duì)我說:“我在照片上見過爸爸的”。那年六月初春學(xué)季剛完,本學(xué)年告一段落,李教授開講的三學(xué)季課程《[0, 1]上的遍歷理論》也圓滿落下帷幕。雖然那時(shí)他的主要興趣已不在混沌和遍歷理論,而是在矩陣特征值及多元多項(xiàng)式方程組同倫求解,但是我們這些弟子增長了見識(shí)、開闊了眼界,對(duì)他直到八十年代中期的研究成果,有了比較清晰的了解。確實(shí),如果對(duì)導(dǎo)師過去的工作都一無所知,那還成什么學(xué)生?要想成為好學(xué)生,不光要理解導(dǎo)師目前的工作,也需要知悉導(dǎo)師過去干了些什么,否則可被稱為一個(gè)跛足的弟子。這和怎樣對(duì)待科學(xué)史道理相同。偉大的全能數(shù)學(xué)家龐加萊(Henri Poincaré,1854-1912)告誡過我們:“如果我們想要預(yù)見數(shù)學(xué)的將來,適當(dāng)?shù)耐緩绞茄芯窟@門科學(xué)的歷史和現(xiàn)狀。”這句話被數(shù)學(xué)史名著《古今數(shù)學(xué)思想》的作者克萊因(Morris Kline,1908-1992)放在了序言的最前面。了解歷史和認(rèn)識(shí)現(xiàn)狀同樣重要,因?yàn)闅v史是一面鏡子。德國數(shù)學(xué)家希爾伯特(David Hilbert,1962-1943)最優(yōu)秀的弟子外爾(Hermann Weyl,1885-1955),曾經(jīng)提到自己“喜歡講授數(shù)學(xué)史”,說得非常有道理。
趁我去北加州開會(huì)之機(jī),我們?nèi)矣?jì)劃在六月份游覽一次美洲大陸西海岸,這是我來美后第一回長途旅游。
從密歇根州到舊金山市的那個(gè)月,我們?nèi)以谘赝静簧俚胤搅粝铝俗阚E。我和許多南大老同學(xué)、老熟人再次相聚。在旅途的第一站伊利諾伊大學(xué)厄巴納-香檳分校,我與大學(xué)同窗胡著信不期而遇,整晚聊天;還和與我同機(jī)赴美讀博士的南大化學(xué)系七八級(jí)學(xué)生李巧英重逢。然后我家老小去了堪薩斯城,得到了韓國師兄李弘九一家的熱情招待,李弘九在密蘇里大學(xué)堪薩斯分校任教。抵達(dá)摩門教大本營鹽湖城后,在猶他大學(xué)讀博士的尹光炎同學(xué)開車帶我們一睹鹽湖風(fēng)光。如今他和我昔日同窗中的另兩名“江蘇高考狀元”,已開始飽覽“夕陽無限好”的退休景色。
到了舊金山灣區(qū),我見到了已在斯坦福大學(xué)統(tǒng)計(jì)系獲得博士學(xué)位的張硯凝同學(xué)。出生于北京、大學(xué)成績優(yōu)秀并且熱愛長跑的他,當(dāng)年考上中國科學(xué)院計(jì)算中心研究生并留洋深造。我來美讀書后收到的第一封在美老同學(xué)來信,就是他熱情洋溢的“歡迎明信片”,他也在第二封信中對(duì)我給新生女兒取名“易之”大加贊賞:“不愧了你的文學(xué)功底”。后來,事業(yè)有成的張硯凝,長跑熱情沒有降溫,參加過好幾次馬拉松,包括著名的波士頓國際馬拉松比賽。
我也與南大七八級(jí)的數(shù)學(xué)才子戴建崗再次相會(huì)。他正在斯坦福大學(xué)數(shù)學(xué)系撰寫博士論文(他現(xiàn)任康奈爾大學(xué)運(yùn)籌學(xué)與信息工程學(xué)院講座教授,同時(shí)任職香港中文大學(xué)(深圳)數(shù)據(jù)科學(xué)學(xué)院院長)。之前的三月初,他專門去了舊金山國際機(jī)場替我接機(jī),將我母親和女兒送到飛往底特律的登機(jī)口。我們在美麗的斯坦福校園漫步,游覽這所世界名校。家母在校園中央的著名大教堂前留了影。這是斯坦福夫人為紀(jì)念1885年與她共同創(chuàng)建學(xué)校的鐵路大王丈夫而建立的。四分之一世紀(jì)后的2013年感恩節(jié)前,我去看望已在那里工作的女兒。在萬里無云的藍(lán)天下,我們兩人在這座美麗教堂前留下合照,讓八十五歲高齡的家母再次目睹壯觀的斯坦福建筑。
書稿中的閃光
在旅途動(dòng)身前,李天巖教授問我是否有興趣,根據(jù)他剛結(jié)束課程的現(xiàn)成講稿,幫他補(bǔ)完成一本中文書初稿。臺(tái)灣某個(gè)學(xué)術(shù)基金會(huì)希望他出版此書。去年他在日本碰到美國普渡大學(xué)數(shù)學(xué)系莫宗堅(jiān)(1940-)教授,二人商榷了此事,這也是他開這門課的初衷之一。李教授承諾從國家科學(xué)基金會(huì)獎(jiǎng)給他的夏季研究資助中,撥出一份給我,這樣我就可以集中精力寫書,而不必分心于教書工作。我當(dāng)然愿意啦,這不光是鞏固已學(xué)知識(shí)的極好機(jī)會(huì),更給我未來學(xué)術(shù)寫作提供了一個(gè)練兵場所。
回到密歇根后,我很快進(jìn)入狀態(tài),開始起草導(dǎo)師交代的書稿。該書的基本框架已具雛形,只需添加作為預(yù)備知識(shí)的基礎(chǔ)部分,并統(tǒng)一書面表達(dá)和語言符號(hào)。我馬不停蹄地伏案工作了兩個(gè)月。這也是我重新梳理知識(shí)、鍛煉學(xué)術(shù)寫作的過程,給我日后自己寫書提供了極好的練筆機(jī)會(huì)。更重要的是,在撰寫關(guān)于絕對(duì)連續(xù)不變測度計(jì)算的烏拉姆方法那一章的某個(gè)瞬間,我無意中靈光一閃,為一項(xiàng)新研究創(chuàng)造了契機(jī)。
李教授計(jì)劃出版的這本中文著作,主要講的是在遍歷理論中有廣泛應(yīng)用的一類正算子——弗羅貝尼烏斯-佩隆算子,它是把非負(fù)函數(shù)映成非負(fù)函數(shù)的線性算子,并保持積分不變,前一個(gè)性質(zhì)就是“正算子”的定義。算子的名稱借用了兩個(gè)德國數(shù)學(xué)家名字,實(shí)際上與他們風(fēng)馬牛不相及。只是因?yàn)檫@個(gè)無窮維算子繼承了非負(fù)矩陣的若干好性質(zhì),并由于先是1907年的佩?。∣skar Perron,1880-1975)、然后是1912年的弗羅貝尼烏斯,建立了非負(fù)矩陣的一般理論,以至于烏拉姆在《數(shù)學(xué)問題集》中把他們的名字借了過來,給該算子命名。這種“張冠李戴”的現(xiàn)象,在數(shù)學(xué)史中并不鮮見,比如解非線性方程組的牛頓法并非由牛頓正式提出,他只是用它逼近了一個(gè)多項(xiàng)式方程的根。牛頓法收斂性理論的系統(tǒng)研究,歸功于二十世紀(jì)俄羅斯數(shù)學(xué)家康拓諾維奇。微積分中求不定型極限的洛必達(dá)法則,更是個(gè)“欺世盜名”的結(jié)果。被洛必達(dá)(Guillaume de l'H?pital,1661-1704)放在他1696年書中的這個(gè)法則,實(shí)際上由瑞士數(shù)學(xué)家約翰伯努利(Johann Bernoulli,1667-1748)發(fā)現(xiàn)。不變密度函數(shù)是弗羅貝尼烏斯-佩隆算子的不動(dòng)點(diǎn)。李教授書稿的前面幾章,講的都是算子不動(dòng)點(diǎn)的存在性定理和性質(zhì),最后一章才涉及它們的計(jì)算,標(biāo)題為“弗羅貝尼烏斯-佩隆算子的有限逼近”,內(nèi)容為烏拉姆方法以及李天巖關(guān)于烏拉姆猜想、對(duì)于洛速達(dá)-約克區(qū)間映射族收斂性的漂亮證明。
當(dāng)我快要寫完這章,整個(gè)書稿就要大功告成之時(shí),腦袋里突然冒出一個(gè)疑問。從計(jì)算數(shù)學(xué)角度看,用逐片常數(shù)函數(shù)逼近一般函數(shù)是最簡單粗糙的做法。為什么不能采用逐片線性甚至逐片二次函數(shù)來逼近呢?常識(shí)告訴我們,如用水平線來近似懸鏈線,精度遠(yuǎn)低于用連接曲線上兩點(diǎn)的線段逼近它。于是我好奇心大盛,馬上拿起紙筆,畫圖演算起來。三十多年來,我一直致力于計(jì)算遍歷理論的研究,而這趟千里之行,就從此處開始。它與我之前的內(nèi)點(diǎn)算法研究毫不相干,分屬相距十萬八千里的兩個(gè)天地。由于我既在美國掌握了純數(shù)學(xué)分支遍歷理論的基本知識(shí),又早有南大老本行計(jì)算數(shù)學(xué)專業(yè)打下的良好基礎(chǔ),我的思路比較清晰,進(jìn)展也相當(dāng)順利。我注意到烏拉姆方法既是保正性、保積分的一種保結(jié)構(gòu)算法,又屬于傳統(tǒng)的投影算法范疇。于是我就沿著這兩個(gè)方向來推廣它。很快,我就構(gòu)造出兩類基于逐片線性或逐片二次多項(xiàng)式的新算法。第一類依賴于迦遼金投影原理,另一類因使用了有限維的馬爾科夫算子而保結(jié)構(gòu),我將之命名為馬爾科夫有限逼近法。以俄羅斯數(shù)學(xué)家名字冠名的馬爾科夫算子,比弗羅貝尼烏斯-佩隆算子范圍更廣,它定義為保持非負(fù)函數(shù)積分不變的正算子。對(duì)于烏拉姆方法能收斂的洛速達(dá)-約克類區(qū)間映射,我證明了新算法的收斂性。為證實(shí)高階數(shù)值方法收斂更快,我用系里的太陽-工作站電腦(指計(jì)算機(jī)公司Sun Microsystems推出的工作站——編者注),輸入自己編制的Fortran程序,進(jìn)行計(jì)算比較。數(shù)值試驗(yàn)結(jié)果顯示它們比烏拉姆方法收斂快得多,差距之大就像呂布的赤兔馬同呂布本人賽跑。后來,兩位華人教授從理論上研究了逐片線性馬爾科夫有限逼近法的收斂速率,加上我和李教授于1998年發(fā)表的后續(xù)文章,最終建立了此類算法的收斂速率理論和誤差估計(jì)。
1989年八月底,我完成了李天巖教授中文專著的初稿。作為副產(chǎn)品,也拿出兩篇研究文章。連我也感驚奇的是,這本書我連草稿都沒打,每章每節(jié)基本上是根據(jù)李教授課程講義的概述,先在腹中醞釀一番,然后一氣呵成地寫下,這大大節(jié)省了寫作時(shí)間。在兩個(gè)月內(nèi),我不僅起草了一本中文書,還做了一些有意義的研究。當(dāng)我把書稿交給導(dǎo)師,并獻(xiàn)上了論文初稿時(shí),他先是驚訝,看完后覺得滿意。從此,我再也沒有過問那本書稿的命運(yùn)。遺憾的是,李天巖教授一直忙于多項(xiàng)式方程組數(shù)值解方面的宏偉研究計(jì)劃,基本上已離開混沌動(dòng)力系統(tǒng)和遍歷理論這個(gè)早年讓他揚(yáng)名天下的領(lǐng)域,因而從未有暇修改完成這本著作,殊為可惜。而我則相反,從導(dǎo)師課程中學(xué)習(xí)遍歷理論培養(yǎng)出的興趣,加上這段寫作、研究的獨(dú)特經(jīng)歷,讓我離開了內(nèi)點(diǎn)算法,投身于計(jì)算遍歷理論,多年來樂此不倦,并與中國科學(xué)院計(jì)算數(shù)學(xué)與科學(xué)工程計(jì)算研究所的周愛輝博士合作,在2006年通過清華大學(xué)出版社出版了研究生中文教材《確定性系統(tǒng)的統(tǒng)計(jì)性質(zhì)》。它對(duì)應(yīng)的英文版則在2008年底由該出版社和德國的施普林格出版社聯(lián)合出版。
畢業(yè)和工作
大概在1989年十月的某天上午,李天巖教授來到我的教學(xué)助理辦公室,親切地對(duì)我說:“你可以考慮明年畢業(yè),就把最新的這兩篇文章整理成你的博士論文吧。”我心存感激,同意他的安排。我們這一批直接從大陸招來的博士生,除我是1986年一月來美,其余的幾個(gè)都是國內(nèi)名校七七級(jí)(“77級(jí)”是恢復(fù)高考后的首屆大學(xué)生——編者注)的,分別畢業(yè)于吉林大學(xué)、武漢大學(xué)、廈門大學(xué)等,加上一個(gè)從美國私立名校西北大學(xué)投奔他來,由訪問學(xué)者身份搖身一變的博士研究生,都是1986年八月進(jìn)校的。很自然我可以比他們早點(diǎn)畢業(yè)。上一年,我來自北師大七七級(jí)的師姐已經(jīng)博士畢業(yè),找到了大學(xué)教職,就在李教授布勞威爾不動(dòng)點(diǎn)計(jì)算論文開始名揚(yáng)天下的所在地——克萊姆森大學(xué)數(shù)學(xué)系擔(dān)任助理教授。那時(shí),美國的經(jīng)濟(jì)還比較強(qiáng)勁,大學(xué)教書的新位置也不少。
找工作的難易度,和經(jīng)濟(jì)形勢甚至社會(huì)環(huán)境的好壞線性相關(guān)。1957年,蘇聯(lián)的衛(wèi)星上了天,把美國嚇了一大跳,以為自己的科技水平落到對(duì)方后頭去了。高層領(lǐng)導(dǎo)一聲號(hào)令,美國的大學(xué)馬上開始膨脹,導(dǎo)致六十年代的新科博士俏得很,個(gè)個(gè)都能謀到一份大學(xué)教書的好差事。結(jié)果是,他們當(dāng)中的一部分,由于先天不足或后天懈怠,在競爭激烈的學(xué)術(shù)環(huán)境中敗下陣來,待遇每況愈下,尤其在研究型大學(xué)。密歇根州立大學(xué)的教授中也有這樣的人,在老教授中的比例不算太低。我記得有一次,導(dǎo)師遠(yuǎn)遠(yuǎn)指著一名學(xué)術(shù)地位不太高的教授的辦公室,對(duì)弟子開玩笑說:當(dāng)我還在高中讀書的時(shí)候,他就是教授了,但他現(xiàn)在的薪水差不多只是我的一半。當(dāng)李教授1974年拿到博士學(xué)位時(shí),美國博士的好日子已經(jīng)過去,很多人找不到飯碗。他能幸運(yùn)地謀到一份大學(xué)教職,而許多像他這樣的中國臺(tái)灣博士只好打道回府。不過后來不少人由于臺(tái)灣經(jīng)濟(jì)騰飛而賺了大錢。他又告訴過我們,他的第一個(gè)博士研究生、來自臺(tái)灣的朱天照,1982年拿到學(xué)位時(shí),情況又一次倒轉(zhuǎn),校園面試機(jī)會(huì)多得應(yīng)接不暇。最終朱博士選擇了北卡羅來納州立大學(xué)。他的研究表現(xiàn)十分出色,六年后就破格榮升到正教授了。
然而沒想到的是,我1990年畢業(yè),正巧趕上美國大學(xué)教職行情最嚴(yán)峻的新一輪周期!好在我找到了正式助理教授位置,但那是后話了。
寫于2024年3月24日星期日
美國哈蒂斯堡夏日山莊
注:本文根據(jù)2016年由商務(wù)印書館出版的《親歷美國教育:三十年的體驗(yàn)與思考》第六章《博士論文》修改而成。
致謝:感謝朱慧堅(jiān)博士提出兩處修改意見,增加了敘述的準(zhǔn)確性。
本文受科普中國·星空計(jì)劃項(xiàng)目扶持
出品:中國科協(xié)科普部
監(jiān)制:中國科學(xué)技術(shù)出版社有限公司、北京中科星河文化傳媒有限公司
特 別 提 示
1. 進(jìn)入『返樸』微信公眾號(hào)底部菜單“精品專欄“,可查閱不同主題系列科普文章。
2. 『返樸』提供按月檢索文章功能。關(guān)注公眾號(hào),回復(fù)四位數(shù)組成的年份+月份,如“1903”,可獲取2019年3月的文章索引,以此類推。
版權(quán)說明:歡迎個(gè)人轉(zhuǎn)發(fā),任何形式的媒體或機(jī)構(gòu)未經(jīng)授權(quán),不得轉(zhuǎn)載和摘編。轉(zhuǎn)載授權(quán)請(qǐng)?jiān)凇阜禈恪刮⑿殴娞?hào)內(nèi)聯(lián)系后臺(tái)。