版權(quán)歸原作者所有,如有侵權(quán),請(qǐng)聯(lián)系我們

葡萄果實(shí)病害的生物防治

中國植物病理學(xué)會(huì)
原創(chuàng)
中國植物病理學(xué)會(huì)官方賬戶
收藏

目前全球葡萄果實(shí)病害危害不容小覷,但在防治方面有更加緊迫的事需要處理,殺菌劑的開發(fā)為真菌病害防控提供了高效低毒的化合物,但病原菌的抗性突變和環(huán)境問題日益凸顯(Hahn, 2014),得到人們重視。歐盟等地區(qū)已經(jīng)開始限制殺菌劑的使用(Lamichhane, 2017),消費(fèi)者也逐漸趨向于不使用化學(xué)農(nóng)藥的食品,這也極大的推動(dòng)了生物防治的發(fā)展。這期我們來談?wù)勱P(guān)于葡萄果實(shí)病害的生物防治。

葡萄炭疽病 近年許多生防制劑被用于葡萄炭疽病的防治。酵母 Saccharomyces cerevisiae GA8菌株對(duì)葡萄炭疽病病原物膠孢炭疽菌和尖孢炭疽菌均有良好的抑制效果,田間防效也甚佳(Liu et al., 2018)。芽胞桿菌在葡萄炭疽病的生物防治中也占據(jù)突出地位(Sawant et al., 2016; 臧超群 等, 2011)。如蠟樣芽胞桿菌 Bacillus cereus NRKT 菌株(Aoki et al., 2017)能顯著降低田間葡萄炭疽病發(fā)病率,枯草芽胞桿菌與吡唑醚菌酯及其混配對(duì)葡萄炭疽病、白腐病有良好的室內(nèi)和田間防效(Mu, 2015)。Pedrotti, C 等發(fā)現(xiàn),兩種桉樹精油對(duì)葡萄炭疽病菌、灰霉病菌有平板抑菌活性(Pedrotti et al., 2019)。決明子油、圣羅勒油、薄荷油,Baccharis trimeraBaccharis dracunculifolia的精油能預(yù)防和治療葡萄采后由炭疽菌和灰葡萄孢引起的腐爛,有很強(qiáng)的應(yīng)用潛能(Quyen et al., 2019)。此外,硅酸鈉、殼聚糖等對(duì)葡萄炭疽菌也有良好的防治效果(侯琿 等, 2016)。

葡萄灰霉病 由于葡萄灰霉病在采前和采后廣泛發(fā)生,而灰霉病菌的抗藥性風(fēng)險(xiǎn)很高,近年葡萄灰霉病的生物防治研究引起極大關(guān)注,多種真菌、細(xì)菌、植物提取物在灰霉病防治中得到深入研究和商業(yè)化應(yīng)用。多種酵母(如 Saccharomyces cerevisiae, Pichia sp., Candida spp., Metschnikowia spp.)、木霉、出芽短梗霉菌等真菌對(duì)葡萄灰霉病具有良好的生防潛力(Kasfi et al., 2018; Wang et al., 2018; 康萍芝 等, 2007)。Qin 等將酵母 Hanseniaspora uvarum 與水楊酸、碳酸氫鈉結(jié)合使用于采后葡萄的灰霉病防治,取得良好效果(Qin et al., 2015)。Li 等從葡萄葉片中分離得到的 Albifimbria verrucaria SYE-1 菌株能有效抑制灰霉病菌的菌絲生長和分生孢子萌發(fā),對(duì)‘紅地球’葡萄葉片灰霉病有良好離體防效(Li et al., 2020)。Trichoderma koningii Td85 菌株和 Saccharomyces cerevisiae L30b 菌株對(duì)葡萄灰霉病有良好田間防效。由木霉菌研制出的商品制劑 Trichodex 已經(jīng)在歐洲和北美等 20 多個(gè)國家注冊(cè)、推廣,細(xì)基格孢 Ulocladium oudemansii、殼聚糖等在國外得到了商業(yè)化應(yīng)用,在中國農(nóng)藥信息網(wǎng)上也有木霉對(duì)葡萄灰霉病防治的登記信息(Calvo et al., 2013)。細(xì)菌如枯草芽胞桿菌Bacillus subtilis, 解淀粉芽胞桿菌B. amyloliquefaciens, 熒光假單胞菌 Pseudomonas fluorescens, Starmerella bacillaris, S. abacillaris 等均有研究 (Bruisson et al., 2019; Jiang et al., 2019)。Boubakri等發(fā)現(xiàn),枯草芽胞桿菌 Bacillus subtilis (Bs1 和 Bs2 菌株)及其無菌濾液對(duì)葡萄灰霉病菌有良好的體外抑菌活性(Boubakri et al., 2015)。在法國六個(gè)葡萄園中進(jìn)行的試驗(yàn)結(jié)果顯示,Bacillus ginsengihumi (S38)可將葡萄灰霉病發(fā)病嚴(yán)重度降低 35-60%,另外幾種已商業(yè)化生產(chǎn)的菌株 及其防效分別為 C. sake(45%), B. subtilis (54%), B. amyloliquefaciens (58%) (Calvo et al., 2019)。
另外,一些植物提取物、精油、鹽、化合物等也在葡萄灰霉病防治上有廣泛應(yīng)用(Calvo, 2014),研究表明生防制劑或植物提取劑與殺真菌劑結(jié)合使用可有效預(yù)防灰霉病,并降低殺真菌劑殘留的風(fēng)險(xiǎn)(Rotolo et al., 2018)。

葡萄白腐病等 白腐病的生物防治研究報(bào)道較少。崔貴青篩選出具有白腐病菌拮抗活性的放線菌菌株 G4,并對(duì)菌株發(fā)酵條件進(jìn)行優(yōu)化(崔貴青, 2012),另有研究表明芽胞桿菌 GSBM05 對(duì)葡萄白腐病菌有抑菌活性(尹向田 等, 2018),多粘類芽胞桿菌 HT16 發(fā)酵液能有效降低由 Coniella diplodiella 引起的白腐病發(fā)病率(Han et al., 2015)。
酸腐病的防治需將抑菌和殺蟲結(jié)合。如酵母 Candida sake CPA-1 除了對(duì)葡萄灰霉病有效外,還能顯著降低田間酸腐病發(fā)病率(Carbó et al., 2019)。果蠅的生物防治措施主要有釋放天敵昆蟲、使用精油趨避等。葡萄內(nèi)生真菌和細(xì)菌被用于篩選有效的曲霉、灰葡萄孢抑制菌株(Diguta et al., 2016)。酵母 Lanchancea thermotolerans 在田間試驗(yàn)中對(duì)釀酒葡萄上的黑曲霉生長和曲霉毒素 A(OTA)的產(chǎn)生有抑制作用(Ponsone, 2016),木霉 Trichoderma viride JAU60菌株對(duì)黑曲霉引起的花生腐爛有抑制效果(Gajera et al., 2016),紫葳科植物提取物對(duì)引起葡萄果實(shí)腐爛的黑曲霉 Aspergillus nigerA. carbonarius 有抗菌活性(Gisselle, 2019)。
葡萄穗軸褐枯病的生物防治研究也逐漸得到重視,主要有植物提取物:薄荷精油、百里香精油、大蒜提取物等;抗生素:多抗霉素等;微生物:酵母、丁香假單胞菌、防御假單胞菌、枯草芽胞桿菌、解淀粉芽胞桿菌等。(集賢 等, 2014)。以殼聚糖為包衣劑的酵母Metschnikowia pulcherrima RCM2 菌株對(duì)鏈格孢在采后引起的腐爛有良好抑制效果(Stocco et al., 2019)

參考文獻(xiàn)崔貴青 (2012). 葡萄白腐病菌拮抗放線菌的篩選鑒定及發(fā)酵條件研究 (吉林農(nóng)業(yè)大學(xué)).

侯琿, 周增強(qiáng), 王麗, 王生榮 (2016). 硅酸鈉對(duì)葡萄炭疽病的防治效果. 植物保護(hù)學(xué)報(bào) 43, 836-841.

集賢, 張平, 李志文 (2014). 納他霉素對(duì)葡萄采后交鏈孢菌的抑制作用. 食品工業(yè)科技 35, 308-311.

康萍芝, 張麗榮, 沈瑞清 (2007). 11 種木霉菌對(duì)葡萄灰霉病菌的拮抗作用. 中國農(nóng)學(xué)通報(bào), 392-395.

尹向田, 蘇玲, 吳新穎, 楊立英, 張久慧 (2018). 芽孢桿菌 GSBM05 對(duì)葡萄白腐病菌的抑菌活性及

其鑒定. 中國農(nóng)學(xué)通報(bào) 34, 134-141.

臧超群, 趙奎華, 劉長遠(yuǎn), 梁春浩, 關(guān)天舒, 王輝, 王璐 (2011). 葡萄炭疽病有益微生物篩選及控病

效果研究. 中國農(nóng)學(xué)通報(bào) 27, 387-390.

Aoki, T., Aoki, Y., Ishiai, S., Otoguro, M., and Suzuki, S. (2017). Impact of Bacillus cereus NRKT on Grape Ripe Rot Disease Through Resveratrol Synthesis in Berry Skin. Pest Manage Sci 73, 174-180.

Boubakri, H., Hadj-Brahim, A., Schmitt, C., Soustre-Gacougnolle, I., and Mliki, A. (2015). Biocontrol Potential of Chenodeoxycholic Acid (CDCA) and Endophytic Bacillus subtilis Strains Against the Most Destructive Grapevine Pathogens. New Zeal J Crop Hort 43, 261-274.

Bicarbonate. Postharvest Biol Tec 100, 160-167.

Li, Z., Chang, P., Gao, L., and Wang, X. (2020). The Endophytic Fungus Albifimbria verrucaria from Wild Grape as an Antagonist of Botrytis cinerea and Other Grape Pathogens. Phytopathology, O9190347R.

Bruisson, S., Zufferey, M., L Haridon, F., Trutmann, E., Anand, A., Dutartre, A., De Vrieze, M., and Weisskopf, L. (2019). Endophytes and Epiphytes From the Grapevine Leaf Microbiome as Potential Biocontrol Agents Against Phytopathogens. Front Microbiol 10.

Calvo-Garrido, C., Elmer, P.A.G., Vi?as, I., Usall, J., Bartra, E., and Teixidó, N. (2013). Biological Control of Botrytis Bunch Rot in Organic Wine Grapes with the Yeast Antagonist Candida sake CPA-1. Plant Pathol 62, 510-519.

Carbó, A., Torres, R., Usall, J., Marín, A., Chiralt, A., and Teixidó, N. (2019). Novel Film-Forming Formulations of the Biocontrol Agent Candida sake CPA-1: Biocontrol Efficacy and Performance at Field Conditions in Organic Wine Grapes. Pest Manage Sci 5, 959-968.

Diguta, C.F., Matei, F., and Cornea, C. P. (2016). Biocontrol Perspectives of Aspergillus carbonarius, Botrytis cinerea and Pencillium expansum on Grapes Using Epiphytic Bacteria iIsolated from Romanian Vineyards. Rom Biotech Lett 21, 11126-11132.

Gisselle R. Apud, P.A.A.M. (2019). Antifungal Activity of Bignoniaceae Plants on. Nat Prod Res.

Gajera, H.P., Katakpara, Z.A., Patel, S.V., and Golakiya, B.A. (2016). Antioxidant Defense Response Induced by Trichoderma viride Against Aspergillus niger Van Tieghem Causing Collar Rot in Groundnut (Arachis hypogaea L.). Microb Pathog 91, 26-34.

Hahn, M. (2014). The Rising Threat of Fungicide Resistance in Plant Pathogenic Fungi Botrytis as a Case

Study. Journal of Chemical Biology 7, 133-141.

Han, J., Chen, D., Huang, J., Li, X., Zhou, W., Gao, W., and Jia, Y. (2015). Antifungal Activity and

Biocontrol Potential of Paenibacillus polymyxa HT16 Against White Rot Pathogen (Coniella diplodiella Speq.) in Table Grapes. Biocontrol Sci Techn 25, 1120.

Jiang, M.Y., Wang, Z.R., Chen, K.W., Kan, J.Q., Wang, K.T., Zalán, Z., Hegyi, F., Takács, K., and Du,

M.Y. (2019). Inhibition of Postharvest Gray Mould Decay and Induction of Disease Resistance by

Pseudomonas Fluorescens in Grapes. Acta Aliment Hung 48, 288-296.

Kasfi, K., Taheri, P., Jafarpour, B., and Tarighi, S. (2018). Identification of Epiphytic Yeasts and Bacteria

with Potential for Biocontrol of Grey Mold Disease on Table Grapes Caused by Botrytis cinerea. Span J Agric Res 16, e1002.

Lamichhane, J.R. (2017). Pesticide Use and Risk Reduction in European Farming Systems with IPM_ An

Introduction to the Special Issue. Crop Protect 97, 1-6.

Liu, Z., Du, S., Ren, Y., and Liu, Y. (2018). Biocontrol Ability of Killer Yeasts (Saccharomyces Cerevisiae)

Isolated from Wine Against Colletotrichum Gloeosporioides on Grape. J Basic Microb 58, 60-67.

M. L. Ponsone, M.C.N.M. (2016). Evaluation of the Effectiveness of Potential Biocontrol Yeasts Against

Black Sur Rot and Ochratoxin A Occurring Under Commercial Greenhouse Grape Production Conditions. Biol Control 103, 78-85.

Muxiang JI, N.M.G.L. (2015). On the Bacteriostatic Activity of Bacillus subtilis and Pyraclostrobin as

Well as Their Mixtures to Grape Anthracnose and the Field Disease Control Efficiency. Agricultural Science & Technology 16, 2736-2741.

Pedrotti, C., Marcon, ?.R., Delamare, A.P.L., Echeverrigaray, S., Silva Ribeiro, R.T., and Schwambach, J. (2019). Alternative Control of Grape Rots by Essential Oils of Two Eucalyptus Species. J Sci Food Agr 99,

6552-6561.

Qin, X., Xiao, H., Xue, C., Yu, Z., Yang, R., Cai, Z., and Si, L. (2015). Biocontrol of Gray Mold in Grapes with the Yeast Hanseniaspora uvarum Alone and in Combination with Salicylic Acid or Sodium .

Quyen, N.T.T., Thao, L.T.T., Thao, T.T.T., Quyen, C.T.N., Kim Thuy, D.T., and Dong, L.M. (2019). Extending the Shelf life of Grape by Combining the Ca-alginate Film and Essential Oil. Vietnam Journal of Science and Technology 57, 657.