版權(quán)歸原作者所有,如有侵權(quán),請聯(lián)系我們

空氣也能這樣玩?水下恒壓壓縮空氣儲能來了!

中國科普博覽
原創(chuàng)
中國科協(xié)、中科院攜手“互聯(lián)網(wǎng)+科普”平臺,深耕科普內(nèi)容創(chuàng)作
收藏

出品:科普中國

作者:劉長春(中國科學(xué)院工程熱物理研究所 副研究員)

監(jiān)制:中國科普博覽

編者按:為揭開科技工作的神秘面紗,科普中國前沿科技項(xiàng)目推出“我和我的研究”系列文章,邀請科學(xué)家親自執(zhí)筆,分享科研歷程,打造科學(xué)世界。讓我們跟隨站在科技最前沿的探索者們,開啟一段段充滿熱情、挑戰(zhàn)與驚喜的旅程。

海上可再生能源發(fā)電,尤其是風(fēng)電,已進(jìn)入規(guī)?;l(fā)展時(shí)期。據(jù)國際可再生能源署(IEA)和中國風(fēng)能協(xié)會(CWEA)報(bào)道,2023年全球海上風(fēng)電新增裝機(jī)7.3GW,累計(jì)超過50GW,其中,中國海上風(fēng)電累計(jì)裝機(jī)達(dá)到37.7GW,位居全球第一。

由于可再生能源具有波動性、隨機(jī)性和不可預(yù)測性,難以滿足居民用戶穩(wěn)定用能需求。儲能通過在電力過剩時(shí)儲存盈余電力,在電力不足時(shí)釋放儲存的能量補(bǔ)充電力缺口,能夠?qū)崿F(xiàn)可再生能源平滑輸出,保障用戶用能需求,在發(fā)電側(cè)與用戶側(cè)之間建立起一條彈性紐帶。

隨著海上可再生能源大規(guī)模發(fā)展,海上儲能需求急劇增加。如何開發(fā)出經(jīng)濟(jì)、適用、可靠的海上儲能技術(shù)是儲能相關(guān)從業(yè)者們首先需要解決的問題。

壓縮空氣儲能技術(shù)

壓縮空氣儲能技術(shù)是基于燃?xì)廨啓C(jī)技術(shù)發(fā)展起來的物理儲能技術(shù),系統(tǒng)原理如下圖所示,具有儲能規(guī)模大、放電時(shí)間長、建設(shè)和運(yùn)行成本低、壽命長等特點(diǎn)。

儲能時(shí),利用過?;蚍欠逯惦娔茯?qū)動電動機(jī)旋轉(zhuǎn),將電能轉(zhuǎn)化為機(jī)械能,電動機(jī)帶動壓縮機(jī)(一種將低壓氣體提升為高壓氣體的機(jī)械)將空氣從低壓狀態(tài)壓縮至高壓狀態(tài),并將高壓空氣儲存在儲氣裝置(鹽穴、人工硐室或儲氣罐)中,最終將電能轉(zhuǎn)換成空氣熱能和壓力能。

釋能時(shí),高壓空氣從儲氣裝置釋放,進(jìn)入燃燒室同燃料一起燃燒,或在換熱器中被其他熱流體加熱,高溫高壓氣體驅(qū)動透平(將流體介質(zhì)中的能量轉(zhuǎn)換成機(jī)械功的機(jī)器)旋轉(zhuǎn),透平帶動發(fā)電機(jī)發(fā)電,最終將空氣內(nèi)能轉(zhuǎn)換成電能。

壓縮空氣儲能技術(shù)示意圖

(圖片來源:中國科學(xué)院工程熱物理研究所)

中國科學(xué)院工程熱物理研究所從2004年開始開展不需要燃燒燃料的先進(jìn)壓縮空氣儲能技術(shù)研究,完成了先進(jìn)壓縮空氣儲能技術(shù)從kW級到300MW級的蛻變,成功將先進(jìn)壓縮空氣儲能技術(shù)從理論研究推向商業(yè)化應(yīng)用階段。

工程熱物理研究所壓縮空氣儲能技術(shù)研發(fā)歷程

(圖片來源:中國科學(xué)院工程熱物理研究所)

另辟蹊徑

無論是傳統(tǒng)壓縮空氣儲能,還是目前已進(jìn)入商業(yè)化初期的先進(jìn)壓縮空氣儲能,均采用容積不變的儲氣裝置,屬于恒容壓縮空氣儲能。但現(xiàn)行的恒容壓縮空氣儲能技術(shù),難以滿足海上可再生能源開發(fā)對儲能技術(shù)的迫切需求,它面臨三大關(guān)鍵瓶頸:

第一,沿海特殊的地理環(huán)境中,沒有密封性好的地下鹽穴、無法建設(shè)地下人工儲氣硐室,地面空間不足以安置大規(guī)模儲氣罐,因此難以找到合適的大規(guī)模儲氣場所;

第二,采用恒容儲氣,儲釋能過程中儲氣裝置內(nèi)部壓力和溫度不斷變化,為使得透平輸出功率相對穩(wěn)定,需要通過節(jié)流閥調(diào)節(jié)進(jìn)氣壓力,能量損失大,效率有待進(jìn)一步提高;

第三,受限于儲氣裝置內(nèi)部壓力變化和調(diào)節(jié)需求,設(shè)備需要不斷變化運(yùn)行工作狀態(tài),以適應(yīng)儲氣庫內(nèi)壓力和調(diào)節(jié)需求,頻繁變化工況中效率急劇下降,缺乏可再生能源側(cè)集成儲能系統(tǒng)的相關(guān)理論支持。

針對以上瓶頸,中國科學(xué)院工程熱物理研究所儲能研發(fā)中心的研究人員準(zhǔn)備另辟蹊徑——開發(fā)水下恒壓壓縮空氣儲能技術(shù)。

我們知道,水下特定位置的水壓與水深一一對應(yīng),只要水深不變,水壓便維持不變,因此,設(shè)法將水壓傳遞給儲氣裝置內(nèi)部的空氣就可實(shí)現(xiàn)恒壓儲氣和恒壓放氣。

科研人員由此發(fā)展了閉式柔性儲氣裝置和開式剛性儲氣裝置兩種類型的水下恒壓儲氣裝置。

柔性儲氣裝置外壁與水接觸,水壓通過柔性儲氣裝置傳遞給裝置內(nèi)部空氣,儲氣裝置內(nèi)部氣量變化只會影響儲氣裝置內(nèi)部實(shí)際空間大小,不會導(dǎo)致壓力變化。

開式剛性儲氣裝置底部開孔,直接與水接觸,在充放氣過程中,水通過開孔進(jìn)入或被排出儲氣裝置。同樣地,儲氣裝置內(nèi)部氣量變化不會導(dǎo)致壓力變化。

這兩種儲氣裝置均能實(shí)現(xiàn)裝置內(nèi)部空氣在排氣壓力不變的情況下完全釋放,可以完全利用儲氣空間,儲能密度高。

由于儲/釋能過程中,儲氣庫內(nèi)壓力均維持不變,壓縮機(jī)和透平的工作壓力也可以根據(jù)儲氣庫設(shè)計(jì)壓力最優(yōu)化設(shè)計(jì),且始終工作在設(shè)計(jì)點(diǎn)附近,系統(tǒng)能量損失小,運(yùn)行效率高。

通過對比研究發(fā)現(xiàn),恒壓系統(tǒng)較恒容系統(tǒng)效率高3%-6%,且儲氣壓力越大,恒壓系統(tǒng)儲能密度優(yōu)勢越明顯,絕熱恒壓系統(tǒng)儲能密度可達(dá)恒容系統(tǒng)3倍及以上。

不斷優(yōu)化海上、陸地應(yīng)用

現(xiàn)行的壓縮空氣儲能技術(shù)受限于沿海陸地資源條件,而水下恒壓壓縮空氣儲能技術(shù)恰好能夠利用水下寬廣的海床和水下恒溫恒壓環(huán)境,作為儲氣場所,儲氣規(guī)模不受限制,為海上可再生能源大規(guī)模發(fā)展提供高效、低成本的儲能技術(shù)支撐。

通過水下恒壓壓縮空氣儲能與海上可再生能源共建,協(xié)同規(guī)劃,就能實(shí)現(xiàn)不穩(wěn)定、不可控的可再生能源平滑輸出,為沿海用戶提供穩(wěn)定可靠的綠色電力供應(yīng)。

該技術(shù)除了可以應(yīng)用在海上可再生能源開發(fā)中,還可用于對現(xiàn)有的壓縮空氣儲能電站進(jìn)行升級改造。通過給現(xiàn)有的壓縮空氣儲能電站增加地面水池和敷設(shè)直通儲氣裝置底部聯(lián)通管道,實(shí)現(xiàn)恒壓運(yùn)行,系統(tǒng)額定效率有望提高3%-6%,避免恒容儲氣使系統(tǒng)偏離設(shè)計(jì)工況運(yùn)行,降低電站運(yùn)維難度,大幅提高電站運(yùn)行壽命。

近年來,我們從優(yōu)化設(shè)計(jì)、優(yōu)化運(yùn)行及實(shí)驗(yàn)驗(yàn)證三個(gè)層面展開恒壓壓縮空氣儲能技術(shù)研究。

在優(yōu)化設(shè)計(jì)方面:建立了適合于水下恒壓壓縮空氣儲能的分析方法,確定了能量損失的源頭,揭示了壓力能與熱能協(xié)同高效儲存理論,進(jìn)一步建立了能量損失極小化的優(yōu)化方法;

在優(yōu)化運(yùn)行方面:通過理論分析與實(shí)驗(yàn)驗(yàn)證相結(jié)合的方法揭示了恒壓壓縮空氣儲能關(guān)鍵參數(shù)調(diào)節(jié)特性,提出了多參數(shù)聯(lián)合變工況調(diào)控策略,大幅拓寬高效運(yùn)行范圍。

在實(shí)驗(yàn)驗(yàn)證方面:為突破水下實(shí)驗(yàn)場地和成本限制,提出了基于深水模擬裝置的恒壓壓縮空氣儲能實(shí)驗(yàn)技術(shù),采用高壓水和高壓氣模擬柔性氣囊外部深水環(huán)境,搭建了兆瓦級恒壓壓縮空氣儲能系統(tǒng)實(shí)驗(yàn)平臺,設(shè)計(jì)儲氣壓力等效水深約700米。我們已完成了系統(tǒng)性能實(shí)驗(yàn)與測試,經(jīng)具有CNAS資質(zhì)的第三方測試,系統(tǒng)效率達(dá)到國際領(lǐng)先水平,較同規(guī)模恒容系統(tǒng)高出6.7%。

同時(shí),我們也開展了儲能系統(tǒng)與可再生能源耦合調(diào)控實(shí)驗(yàn)驗(yàn)證,結(jié)果顯示,系統(tǒng)具有很好的負(fù)荷跟隨性能,實(shí)驗(yàn)功率跟隨誤差不超過±5%,且效率均維持在額定效率的90%以上,驗(yàn)證了恒壓系統(tǒng)作為發(fā)電側(cè)儲能的可行性。

恒壓壓縮空氣儲能試驗(yàn)平臺示意圖

(圖片來源:中國科學(xué)院工程熱物理研究所)

兆瓦級恒壓壓縮空氣儲能實(shí)驗(yàn)平臺

(圖片來源:中國科學(xué)院工程熱物理研究所)

結(jié)語

未來我們將進(jìn)一步對水下恒壓壓縮空氣儲能的關(guān)鍵部件進(jìn)行深入研究,突破關(guān)鍵設(shè)備在沿海地帶高鹽霧、高濕度等特殊環(huán)境下長期穩(wěn)定運(yùn)行的能力,攻克開式水下恒壓壓縮空氣儲能中壓縮空氣在水中的溶解難題、閉式水下恒壓壓縮空氣儲能系統(tǒng)中柔性儲氣裝置錨固問題,開展水下壓縮空氣儲能技術(shù)工程示范。

相信在不久的將來,水下恒壓壓縮空氣儲能技術(shù)將逐漸發(fā)展成熟并進(jìn)入產(chǎn)業(yè)化階段,為海上可再生能源發(fā)展保駕護(hù)航,為實(shí)現(xiàn)“雙碳”目標(biāo)注入新的活力。

參考文獻(xiàn):

[1] Changchun Liu, Xu Su, Zhao Yin, Yong Sheng, Xuezhi Zhou, Yujie Xu, Xudong Wang, Haisheng Chen. Experimental study on the feasibility of isobaric compressed air energy storage as wind power side energy storage. Applied Energy. 2024;364:123129.

[2] Changchun Liu, Zhao Yin, Xu Su, Xuehui Zhang, Zhitao Zuo, Yong Sheng, Xuezhi Zhou, Xudong Wang, Yujie Xu, Haisheng Chen. Megawatt Isobaric Compressed Air Energy Storage: an Experimental Study on the Discharge Process. Energy Proceedings; 2024;47.

注:本文作者劉長春,中國科學(xué)院工程熱物理研究所副研究員,長期從事壓縮空氣儲能和分布式供能等關(guān)鍵技術(shù)、多能耦合機(jī)理與控制方法,以及分布式能源與儲能規(guī)劃研究。

內(nèi)容資源由項(xiàng)目單位提供

評論
科普中國●yling
進(jìn)士級
科學(xué)技術(shù)引領(lǐng)未來。對水下恒壓壓縮空氣儲能的關(guān)鍵部件進(jìn)行深入研究將有利于水下恒壓壓縮空氣儲能技術(shù)將逐漸發(fā)展成熟并進(jìn)入產(chǎn)業(yè)化階段,進(jìn)而為海上可再生能源發(fā)展保駕護(hù)航,為實(shí)現(xiàn)“雙碳”目標(biāo)注入新的活力。讓我們共同期待這一天。
2024-07-30
科普科普知識的搖籃!
太師級
水下恒壓壓縮空氣儲能技術(shù)是一項(xiàng)極具潛力的創(chuàng)新技術(shù),它不僅解決了海上可再生能源儲能的難題,還提高了儲能系統(tǒng)的效率和可靠性,為可再生能源的大規(guī)模應(yīng)用開辟了新的道路。
2024-07-30
演繹無限精彩!
大學(xué)士級
隨著技術(shù)的進(jìn)步,水下恒壓壓縮空氣儲能有望在未來的能源體系中扮演更加重要的角色,為實(shí)現(xiàn)能源轉(zhuǎn)型和構(gòu)建更加清潔、高效、可靠的電力系統(tǒng)提供堅(jiān)實(shí)的支撐。
2024-07-30